Journal of Computational Physi&§1,498-533 (1999)

®
Article ID jcph.1999.6194, available online at http://www.idealibrary.conl DE &l.

Semi-Lagrangian Methods for Level
Set Equations

John Straih

Department of Mathematics, University of California, 970 Evans Hall,
Number 3840, Berkeley, California 94720-3840
E-mail: strain@math.berkeley.edu

Received August 19, 1998; revised January 5, 1999

A new numerical method for solving geometric moving interface problems is
presented. The method combines a level set approach and a semi-Lagrangian time
stepping scheme which is explicit yet unconditionally stable. The combination de-
couples each mesh point from the others and the time step from the CFL stability
condition, permitting the construction of methods which are efficient, adaptive, and
modular. Analysis of a linear one-dimensional model problem suggests a surpris-
ing convergence criterion which is supported by heuristic arguments and confirmed
by an extensive collection of two-dimensional numerical results. The new method
computes correct viscosity solutions to problems involving geometry, anisotropy,
curvature, and complex topological eventsg 1999 Academic Press
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1. INTRODUCTION

We present a new numerical method for moving interface problems. The method mel
and breaks interfaces naturally and generally via the level set approach, while decoug
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time step restrictions from the Courant—Friedrichs-Lewy (CFL) stability condition by usir
an explicit yet unconditionally stable semi-Lagrangian time stepping scheme with veloc
smoothing and frequent redistancing. The time stepping scheme also decouples each
point from the others, potentially simplifying both adaptive mesh refinement and para
implementation.

Section 2 of this paper contains standard background material: moving interface probl
and examples, level set and semi-Lagrangian methods. Section 3 presents our metho
explains why it works. Section 4 validates it by solving an extensive collection of numeric
examples including geometric motions with corners, anisotropy, curvature, and comg
topology. Section 5 draws conclusions and discusses future extensions and applicatio

2. BACKGROUND

This section summarizes standard background material on moving interface problems
numerical methods. Subsection 2.1 classifies moving interface problems commonly fo
in applications, by the degree of locality of the velocity as a functional of the interfac
Subsection 2.2 describes how to convert these problems into level set equations on a
domain, eliminating the moving interface. Subsection 2.3 introduces the level set methoc
moving interfaces, Subsection 2.4 relates moving interfaces and CFL conditions for s
important model problems, and Subsection 2.5 reviews and analyzes the simplest s
Lagrangian scheme for hyperbolic partial differential equations (PDEs). Subsection
discusses the derivation of higher-order accurate semi-Lagrangian schemes.

2.1. Moving Interface Problems

A moving interfacel (t) is a collection of nonintersecting oriented closed curveR?n
or surfaces irR? for each timet, a set-valued function of time. Since each component ¢
['(t) is closedI'(t) has an interior and an exterior. Assui@) is sufficiently smooth in
space and time. Then for each timend eachx e T'(t) there is

o an outward unit normal vecta¥ (x, t),
o a signed curvatur€(x, t), chosen positive for a circle or sphere, and
o a normal velocityV (x, t), chosen positive where the interior Bft) is growing.

Given a parametrization df(t), these quantities can be calculated by standard geomet
formulas found in [41].

A moving interface problens a closed system of equations which specifies the norm
velocity V as a functional of” and the other unknowns in the problem. Such problems ce
be divided into three broad classes involving passive transport, geometry, and/or PDE
integral relations off the interface. All occur frequently in applications.

2.1.1. Passive Transport

Passive transport moves an interface in some external flow, which may be given a p
or computed on the fly but does not depend on the interface itself. Ftwg) is a given
velocity field onRY and the normal velocity df (t) is V (x, t) = N(x, t) - F(x, t) which is
independent of (t). This type of problem occurs when modeling common and importal
physical situations such as rotation, shearing, and stretching in an ambient flow, an
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conceptually the simplest to solve because the motion of each point on the interface ol
an ordinary differential equation with a known right-hand side.

2.1.2. Geometry

More complex problems allow the local interfacial geometry to interact with the motio
so the interface satisfies a partial rather than ordinary differential equation. The nor
velocity is a given function

V=VXtN,C,..) 1)

of the interfacial position, normal, curvature, and other local geometric quantities.

ExaMPLE 1. The simplest geometric motion propagal&s) along its normal vector
with constant uniform velocity. Corners form and merging occur¥ @) is not convex, so
I'(t) does not remain smooth, yielding the simplest example of a “viscosity solution” tc
Hamilton—Jacobi equation [7, 13].

Specialized methods for motion with unit normal velocity can be built from Huygen:
principle:I'(t) is an envelope of the set of radilt$circles centered on each pointlof0).
Consider, for example, the inverted “W = —|x| shown in Fig. 1. If'(t) is given by
y=1v(X, t), Huygens’ principle gives

X +/2t, X < —t/+/2
Y(X, 1) =< /12— x2, IX| < t/+/2 (2)
—X+V2t,  x>t/J2
fort > 0. Ast <0 decreases, the inner envelope remains shiafp;t) = —|x — /2t| for

t < 0. Time-reversal symmetry is broken, as for shocks in hyperbolic conservation la
[17].

FIG. 1. Corners moving outward with unit velocity round off into circular arcs, while corners moving inwar
remain sharp by Huygens’ principle.



LEVEL SET EQUATIONS 501

ExampLE 2. A common two-dimensional geometric problem has a ciiggevolving
under aK -fold symmetric anisotropic normal velocity

V(x,t) = R+ € cogK8 + ) + (R + €' cogK'0 + 6)))C, A3)

where co® = N - g is the cosine of the angle between the normal vector and the positi
X-axis.

Anisotropic velocity fields grow or shrink interfaces along their normals with spee
depending on local orientation, easily producing complex merging shapes and mal
these models popular in materials science [40]. With sufficient anisotropy, such velo
fields produce faceted interfaces via the Wulff construction [8, 21, 23, 43, 42]. Atthe corn
of facets, the viscosity solution behaves differently from Example 1, because the velo
is anisotropic. Rather than rounding off, the corner remains sharp even when the velc
is a smooth function of the normal direction. See Subsections 4.2.3 and 4.2.7 for numel
examples.

2.1.3. PDE

In moving interface problems for PDES, the interfacial velocity depends on additior
fields satisfying algebraic, ordinary differential, partial differential, or integral equatior
on or off the interface. These fields can mediate long-distance nonlocal interactions, sc
evolution equation for the interface is no longer a local PDE.

ExAMPLE 3. In volume diffusion [9, 20],

u(X,
V(x,t) = ua()ril 23 (4)
whereu(x, t) solves the Laplace equation
Au=20 outsidel (t) (5)
and the boundary condition
u=C  onl(t), (6)

with boundary conditions ato. Using the Dirichlet—-Neumann operatar- which maps
boundary values for the Laplace equation out$ide the normal derivative of the solution
onT, Egs. (4)—(6) become a single nonlinear nonlocal pseudodifferential equation

V(t) = Ar)C(1). (7)

Equation (7) gives the velocily, and a curve movement equation which moves the interfac
with given velocityV completes the moving interface problem. Several curve moveme
equations exist [34].
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ExampLE 4. A model for crystal growth is treated in [2, 4, 5, 26, 28, 34]. Heris
the jump across the interface of the normal derivaw, whereu satisfies the Stefan
problem

Ui = Au  off I'(t) ®)
U= —e(N)C —e,(N)V  onT(t) 9)

with boundary conditions on outer boundaries. Herande, are given functions of the
outward normaN, as in Example 2.

Problems close to engineering practice often involve complex systems of PDEs and i
gral equations modeling physical effects such as heat flow, convection, elasticity, radiat
chemical and biological reactions, and fields satisfying integrodifferential conditions on
interface itself. Such problems can be extremely difficult to solve numerically, even withc
moving interfaces.

2.2. Level Set Equations

Moving interface problems can be reformulated as “level set equations” on a fixed dom:
using thezero set

I'={xeR%:px) =0} (10)

of a functiong : RY — R. Given an interfac&, there are many functionsfor which T is
the zero set: for example, the distance and the signed distafge to

e(X)=minx —yll,  @X) =Emin|x —y|, (11)
yer yel’

where the plus sign is chosen ferin the interior of . However, not every zero set is
admissible as an interface. Zero sets may be flat wipéseequal to zero on a region and
may cross at isolated points. These pathologies are excludegd ifever vanishes of.
Theng crosses zero cleanly and we can recdvdérom ¢ by contouring. Thus the signed
distance represenismore stably than the distance. Figure 2 shows a hexagon in the ple
and the corresponding signed distance funcgion

Many geometric properties @f have simple expressions in termsgfbecause con-
tains local information which allows implicit differentiation &f For example, the normal
velocity, outward unit normal, and curvature are given by

V =a/lIVell, 12)
N = Vo/[IVel, (13)
C=-V-N, (14)

if ¢ is chosen to be positive inside the zero set [41]. These formulas can be evalu:
everywherep is known, as well as ofi. At a pointx away fromI", they give the geometry
of the level set passing through

Thus if we have the interface then we can compute its velocity fso@onversely, given
an extension of the normal velocity to a function ot andx € RY, Eq. (12) can be viewed
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FIG. 2. The correspondence between (a) a hexagonal interface and (b) the signed distatieeinterface,
plotted over a 20grid.
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as a PDE—the “level set equation"—which movésy evolvinge:
o — V| Vel =0. (15)

Alternatively, we can construct a vector velocity figfdon RY with F=V N on T, and
solve the “linear level set equation”

o —F-Vp=0. (16)

Equations (15) and (16) move every level setgofvith the extended velocity or F,
and in particular move the zero set with the correct velocity. This approach to movi
interfaces embeds the topology ¢nrather thanl'(t), allowing merging, breaking, and
other topological changes to be handled automatically. We pay the price of going up
dimension. EitheV or V N must be extended to a function on the whole space, but tt
extension can be almost completely arbitrary away fio(t).

The moving interface problems from Subsection 2.1 can be put in level set form
follows.

2.2.1. Passive Transport

For passive transpoff, is already defined oRY and is a natural extension ¥fN. Since
N can be extended by Eq. (13), a natural extensiox @ N - F. The resulting level set
equation is a hyperbolic PDE, nonlineaMfis extended,

o= VX DIVe| =0 (17)
and linear ifF is extended,
o — F(x,1)- Vo =0. (18)

N is singular wherév¢ vanishes or is singular. For example, in FigV2; does not exist
at the center and the corners of each hexagonal level set, whisraot differentiable.
Even if Vg exists everywhere, it must vanish at maximum points interior t@o N is
never globally smooth. This suggests that we should exterather tharV/, solve Eq. (16)
instead of EqQ. (15), and avoid usimgoff I.

2.2.2. Geometry

With geometric quantities extended naturally by Egs. (12)-(14), the level set equat
for Example 2 reads

¢t — (R+ecogKo +60) Vel = (R +€ cosK'0 +65)V - (Vo/IIVeDIIVell,  (19)

where co® = ¢4 /|| Ve||. This is a mixed hyperbolic-parabolic PDE containing both first-
order and second-order spatial derivativeg cind becoming singular whe¥&y vanishes.
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2.2.3. PDE

For fluid problems with moving interfaces, the fluid velocity provides a natural extensi
of V N off the interface. But in many other PDE-type models, the normal velocity is bui
from quantities such as boundary values and jump conditions, whose natural habitat i
interface. Then an extension ¥fis not obvious. One could s&t= N - Vu in Example 3
(volume diffusion), butvu is discontinuous acrodd(t). In Example 4 (crystal growth)/
is defined as a jump acrof%t) and an extension of is even less obvious. Thus various
extensions have been developed: In [28], for example, our Eqg. (9) was solvédufadler
the assumption, (N) £ 0 to get

-1
V =
€,(N)

(U+e(N)C), (20)

whereN andC are extended naturally and the jump condition is built into the solution ¢
the heat equation via classical potential theory. General schemes which extend any vel
field off any interface were presented in [1, 5, 38, 39] and applied to this crystal grov
model in [5].

2.3. The Level Set Method

The level set method movéqt) from t =0 by constructing an initial level set function
(X, 0) for I'(0) and an extended velocity fie\d or F for t > 0, solving one of the level set
equations Eq. (15) or Eq. (16) numerically, then findihg) from ¢(x, t) when required.
The method was introduced in [22], and an extensive recent survey is [27]. It has underc
much development and been applied to many moving interface problems.

The main advantage of the level set method over other numerical methods for mov
interfaces is its natural treatment of topological changes such as merging and breaking. T
changes can be difficult to handle with methods based on parametrization, but solving
level set equation merges interfaces naturally and automatically as shown in Fig. 3.

There are some potential difficulties with the level set method. It can be more expen:
since it goes up a dimension, particularly if uniform meshes are used. Extending the velc
off I'(t) can be difficult. One must be careful to obtain the correct “viscosity solution”
Eq. (15) or Eq. (16), by using an appropriate solver for the level set equation [27]. T
method is not sufficientlynodular, a new code must be written for each new problem tc
be solved, since the velocity evaluation is intertwined with the moving interface code
velocity extension and CFL conditions.

We present a level set solver on a uniform mesh in Section 3, which is shown experirr
tally to obtain the correct viscosity solution for passive transport and geometric proble
where velocity extension is straightforward. This solver is designed for easy adaptive
refinement with large time steps, yielding optimal efficiency. An adaptive version is dev
oped in [37]. On this foundation, an efficient, general, and robust velocity extension is b
in [38] and yields a completely modular level set method.

2.4. CFL Conditions

Almost all explicit schemes for PDESs such as the level set equation encounter time ¢
restrictions due to the famous Courant—Friedrichs—Lewy (CFL) condition [17]. This nec
sary condition for convergence requires that in the limit as the time and space mesh size



L '.‘:“\l“‘:“ i
W

4
iy
R

i
A
Gl o
St
%

!
syt
5 |“t“‘l“"“t'l““‘:“ S

. A t““‘l‘“t“.l R
G ‘n‘l‘ t“‘.\'\l

e i I‘.“‘I‘ﬂ ithe!

% iy !

A

gt

o
ot
s i
e
T 47
Y A
kT i1
G

i
i
Wi,
s
R
GO R IR D
G
U BT
st
A
S ey
il v e
"l“" '%I}"I/'

y
PO
o
1

S5

S
S
o

A

e

Y -
=~

i
".p‘
oo
Sonne
g
it

o

o

P

i
o
<o,

Csos

“‘
e

o
—

53
s
S
=
=

=
5
i
e
5
pEa>
TS
2
==

P
S
s
i
<
o

s
e
s
=

e

S
SO
ST
ST
25
e
S

¢
i

P
"f

i
i

i
i

0

o
P
S

A

TR
"‘
=

=

i

S
S
et
e
e
R
‘.‘5-?_
e,
o
e
s
S

o
=
e
S
o
"
s
s

s
o
=
e
T,
T
T
=
=
SN

.

e
N

i
“I“‘!“ ) i%:
LA
e
I
iy g
W

i

S
-
s

g
S

s

5
sl
W

FIG. 3.

is shown at (b) initial and (c) final times.

(a) Two hexagons moving with constant normal velocity merge; the corresponding level set funct
506
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to zero, the domain of dependence of the numerical solution at each spacetime point |
include that of the exact solution. For explicit schemes with bounded stencils for first-or
hyperbolic PDEs, the CFL condition imposes a time step restriction of the dimensione
natural form|Uk| < O(h), wherek is the time steph is the spatial mesh size, atdis
proportional to a characteristic velocity of the PDE. For higher-order PDES these time ¢
restrictions often becomke< O(h?) or O(h®) and make explicit schemes prohibitively
expensive. The usual remedy—implicit time-stepping schemes—is often unavailable
level set equations because the complex and problem-dependent relation bétardn
I'(t) frustrates most nonlinear equation solvers.

In passive transport and unit normal velocity, the level set equation is first-order hyp
bolic, so most explicit schemes encounter a time step restrikto@® (h). This restriction
is inconvenient if a fine or adaptive mesh is used. In the curvature-dependent geom
motion of Example 2, explicit treatment of the second-order parabolic term requires
asymptotically smaller time step< O(h?). Volume diffusion (Example 3) involves the
theory of the “Dirichlet-Neumann operatof which maps boundary values to normal
derivatives A is a first-order pseudodifferential operator, & a second derivative qf,
soV = AC resembles a third-order derivative @f Thereforek < O(h?), and similarly in
Example 4 (crystal growth). This condition requires extremely small time steps. If high
order PDEs such as elasticity are involved, these small time steps can make most sch
prohibitively expensive.

These time step restrictions can be eliminated by allowing unbounded stencils. For
ample, we can build a trivial explicit method for the heat equation which is stable a
convergent with large time stefgs= O(h), if we allow stencil size to grow as the mesh is
refined. Take the standard explicit finite difference method on a sequence of meshes
mesh sizel = 1/n and time stept = h?/2, so the usual CFL condition is satisfied. Define
a new finite difference method with step skke-h =2nAt =1/n by taking 21 tiny steps
of the standard method to pass frérto t + k. The new method is stable and convergen
with k = h, hence satisfies the CFL condition.

Our moving interface method decouples time steps from CFL conditions by using
explicit unconditionally stable time stepping scheme reviewed in Subsection 2.5. M
general schemes of this “semi-Lagrangian” type are presented in Subsection 2.6. For
order hyperbolic problems, these schemes satisfy the CFL condition with large time step
shifting the stencil. For higher-order level set equations, heuristic reasons for our meth
to satisfy CFL conditions are discussed in Subsection 3.3.

2.5. The CIR Scheme
Consider the simplest linear hyperbolic PDE
@ — F(X,t)- Vg =0. (21)
Equation (21) propagatgsvalues along the characteristic cungt) defined by
X(t) = —F(s(t),t),  s(0) = Xo, (22)

because

d .
aw(S(t),t)=¢t+x~<px=<pt—F~V<p=0 (23)
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if ¢ solves Eq. (21). Thus we can figdvalues at any time by finding the characteristic
curve passing througtx, t) and following it backwards to some previous poirs, to)
where the value of is known: thenp(x, t) = ¢ (X, tg). This observation forms the basis
of the “backward characteristic” or “CIR” scheme due to Courant, Isaacson, and R
[6], which is the simplest semi-Lagrangian scheme. Giyext timet,,, CIR approximates

o (X, thy1) at any pointx at timet, 1 =t, + k by evaluating the previous velocify(x, t,),
approximating the backward characteristic throwgby a straight line

X+ (ths1 — DF (X, tq) =~ s(t) (24)
and interpolating at timet, to the point
X+ KF(X, th) ~ s(ty). (25)

Thene(X, thy1) is set equal to the interpolated value.

For linear PDEs, the Lax—Richtmyer equivalence theorem [17] guarantees that CIR \
converge to the exact solutionlash — 0 if it is stable and consistent. For nonlinear PDEs
stability and consistency are necessary but not sufficient.

2.5.1. Stability

The stability properties of the CIR scheme are excellent. Each new ydbud, ;)
is a single interpolated value gf at timet,, so unconditional stability is guaranteed in
any norm where the interpolation does not increase norms. For example, CIR with lin
interpolation is unconditionally stable in the maximum norm. In general, semi-Lagrangi
schemes satisfy the CFL condition by shifting the stencil, rather than restricting the ti
step. Thus information propagates over long distances in one step.

2.5.2. Consistency

Explicit unconditionally stable schemes like CIR or the Dufort—Frankel scheme [1
usually require some consistency condition, in place of the time step restikctidd(h)
required by other explicit schemes. The consistency condition for CIR can be illustra
with the simplest one-dimensional linear hyperbolic PDE

ot — V@X - 07 QD(X, o) = f(X)v (26)

whose solution ig(x, t) = f (x+Vt). The CIR scheme on a uniform meshk- jh, t =nk
produces numerical approximation%to ¢(jh, nk) by the formula

uftt = qup,, + 1 - qup, (27)

where

. (j —m)h —-Vk
m=j—|Vk/h], qz%, (28)
as in Fig. 4. The scheme is unconditionally stable because the projected peed not lie

in the same computational cell msthe stencil shifts to satisfy the CFL condition discussec

in Subsection 2.4.
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t+k

t wd
mh  s=(m+q)h x

FIG. 4. One-dimensional semi-Lagrangian CIR scheme: molackward with velocityv, then interpolate
@ at timet to points.

To check consistency, we plug the exact solutianto the numerical formula and bound
the truncation errot (X, t) defined by

¢(jh, (n+ 1K) = ge((m+ Dh, nk) + (1 — q)e(mh, nk) +kz(jh, (n+ Dk). (29)

The scheme is consistent to first orderrit= O(h) + O(k) on a fixed time interval as
h, k— O. Taylor expansion gives

h2
rzo(k>+om) (30)

if the initial data f have two continuous derivatives. The first term comes fromQlie?)
error in linear interpolation, repeated@t1/ k) time steps, while the second term is due to
approximating the characteristics by straight lines with first-order accurate $tqges,).
Thus CIR is first-order accurate if the following condition is satisfied,

k> Ch (31)

for some arbitrary constaf. This consistency condition differs from the usual time stej
restriction|V k| < h in two important ways: the inequality is reversedsis bounded rather
thank, and the constant is completely independent of and need only be fixed as
k,h— 0.

A similar calculation shows that with higher-order accurate interpolation this lower bou
becomes even less restrictive. For an interpolation method with ©rgiat) per interpola-
tion, a consistency conditiokh> O(hP) produces a semi-Lagrangian scheme with forma
errorO(h%P) 4+ O(k). However, stability becomes an issue since higher-order interpolati
may allow the maximum norm of the solution to increase.

2.5.3. Nonlinear Hyperbolic Problems

To apply the CIR scheme to nonlinear hyperbolic PDEs of the form
o — F(X, t,9) - Vo =0, (32)

Courant, Isaacson, and Rees use a standard approach: egemeet,, in the argument list
of F, then apply the linear CIR scheme to move forward one stepffy¢mt, ;. The scheme
remains unconditionally stable, and if the solution remains smooth, Taylor expansion sh
that consistency is unaffected. However, solutions to a general nonlinear hyperbolic F
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do not remain smooth. Instead, they develop shock discontinuities and degenerate to \
solutions. Uniqueness then fails and an entropy condition is required to select the cor
weak solution.

When shocks occur, both theory and numerics become more difficult. If the PDE i
conservation law and the numerical scheme is in conservation form, then the Lax—\Wenc
theorem [17] guarantees that any limit of the scheme is a weak solution. Equation (32) is
in general a conservation law, and CIR is not in conservation form, so the Lax—Wendi
theorem does not apply. In fact, CIR moves shocks at the wrong speed even in sin
conservation laws [17] and thus cannot be convergent.

Thusthe CIR scheme—while explicitand unconditionally stable—has never been pop
for solving nonlinear conservation laws. It has been used mainly for linear problems, wh
stability plus consistency guarantee convergence. In Subsection 3.3, we explain the sp
features of nonlinear level set equations which permit the convergence of methods b:
on the CIR scheme.

2.6. Semi-Lagrangian Schemes

Semi-Lagrangian schemes which preserve the unconditional stability of CIR but en
higher-order accuracy have been widely used for modeling linear advection in atmosph
science [3, 24, 31, 33]. Their unconditional stability is particularly useful on the sphe
[18, 32], where it eliminates the stringent time step restriction encountered by Euler
schemes on small mesh cells near the poles. In moving interface problems, semi-Lagrar
schemes permit local mesh refinement with large time steps and overcome the inefficie
of level set methods on a uniform mesh. Semi-Lagrangian schemes for special leve
equations have been constructed in [11].

An effective viewpoint for the derivation of higher-order accurate semi-Lagrangic
schemes is presented by Smolarkiewicz and Pudykiewicz in [31], and involves three st
spacetime integration, interpolation or advection, and discretization.

2.6.1. Spacetime Integration

Consider the linear hyperbolic PDE
or—F-Vp=0. (33)

Suppose we know on a regular grid at tims and we seek the valuegx, t) at some time
t > s. The fundamental theorem of calculus and Eq. (33) give

o0, 1) = (Y, s)+/w-<dx+ Fdo), (34)
C

whereC is any path in spacetime connectifyg s) to (X, t).

Several well-known classes of schemes for Eq. (33) are distinguished by their choi
of C. Eulerian schemes take=y andC a straight line segment parallel to thaxis as in
Fig. 5a. Pure Lagrangian schemes ték# be the Lagrangian trajectoily defined by

X(0) = —F(x(0), 0) (39)



LEVEL SET EQUATIONS 511
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T

FIG.5. Spacetime integration patksfor (a) Eulerian, (b) Lagrangian, and (c) semi-Lagrangian schemes.
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starting at a grid poiny, as in Fig. 5b. Sincelx+ Fdt=0 on T, Lagrangian schemes
propagatey values unchanged alofig assuring unconditional stability:

(X, 1) = p(X(1), 1) = ¢(y, 9). (36)

The main drawback of Lagrangian schemes is that a regular mesh rapidly distorts, lo:
discretization accuracy. This mesh distortion has been a long-standing problem in
vortex methods, solved in [35].

Semi-Lagrangian schemes combine the regular mesh of an Eulerian scheme with
unconditional stability of a Lagrangian scheme. They build valueg af regular mesh
pointsx at timet by running a Lagrangian trajectofybackwards frongx, t) to some point
(y, ), then a simple path from the nearest grid poirtat timesto y, as in Fig. 5c. Since
dt=0onL anddx+ Fdt=00nT, we have

o) = 0(2.9) +/w Ldx = (Y. 9). (37)
L

Thus semi-Lagrangian schemes need only transpou thaluation fronx to y, either by
interpolation or advection.

2.6.2. Interpolation or Advection

Many semi-Lagrangian schemes can be derivedteypolatinge(y, s) from known grid
values, as in the CIR scheme of Subsection 2.5. Linear interpolation gives unconditic
stability with first-order accuracy, while higher-order accurate polynomial interpolation ¢
be unstable. Shape-preserving interpolation methods have been compared in [25], and
of these methods yield stable schemes for advection.

Stability issues are eliminated in [31] by re-examining the integral expression

o(Y,8) = ¢(z,9) +/LV<p -dx. (38)

This integral transports the evaluation pointzdfom z to y and can therefore be viewed as
linear advectionwith constant velocity parallel tg — z. The advantage of this viewpoint
is that monotone Eulerian advection schemes generate stable semi-Lagrangian sche
there is no CFL time step restriction singeand z are less than half a mesh size apart.
Alternatively,L can be built from line segments parallel to coordinate axes, giving natural
split semi-Lagrangian schemes from one-dimensional Eulerian advection schemes. Vie\
interpolation as advection can also be reversed, yielding shape-preserving interpolation:
Eulerian advection schemes [30].

2.6.3. Discretization

Specific semi-Lagrangian schemes usually approximate trajectories by a second-c
accurate ordinary differential equation solver such as the implicit mid-point rule

1 1
y=x+(t—s)F(§(x+y),E(t—lrs)), (39)

with F values interpolated—or advected—from the grid points. Equation (39) is nonline
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but fixed point iteration is proved convergent in [12, 24] if the weak non-intersection co
dition

t—-9)|DF| <1 (40)

is satisfied. Semi-Lagrangian schemes are intended for computing smooth solutions wit
shocks, but it is shown in [12] that—even for Lipschitz solutions—the accuracy of the
schemes is limited only by trajectory smoothness, not by solution smoothness.

Given second-order accurate trajectories, a second-order semi-Lagrangian scheme c
built on third-order interpolation methods or Eulerian advection schemes [29]. Spurious
cillations are common with high-order polynomial interpolation, making shape-preservi
interpolation and monotone advection preferable. In this paper, we implement first-or
CIR time stepping with arbitrary-order ENO interpolation [15] to provide spatial accura
without spurious oscillations. We plan to implement second-order trajectory calculatior
future work to reduce the dissipation evident in a few of our numerical experiments.

3. A SEMI-LAGRANGIAN METHOD FOR MOVING INTERFACES

3.1. Overview of the Method

We use semi-Lagrangian time stepping schemes to solve the level set equation
o — F-Vp=0. (42)

HereF is a velocity field orR? which extends/ N off I'(t) and may depend on anything:
¢, N, C, other derivatives of, nonlocal terms, jump conditions, history terms, and s
forth. The combination of level sets and semi-Lagrangian time stepping schemes vyiel
family of methods parametrized by several options. After an overview of these methc
we discuss each option in detail and explain how it contributes to convergence.

3.1.1. Algorithm

Given the level set functiop(x, t,) for every pointx in a uniform grid at timet,, our
methods compute(x, t,.1 =t + k) at each grid poink by the CIR scheme:

o Evaluate the extended velociB/(x, t,) atXx.
o Optionally postprocesB with truncation and smoothing.
o Move x backwards with velocity- F (x, t,) to get the point

s =X+ kF(x, ty). (42)

o Interpolate or adveat (X, ty) to the points to gete(X, thi1) = ¢(S, th).
o Redistance if desired, by replacing by the signed distance to its zero set.

3.1.2. Features

Methods of this family have several unique features:

o Eachnewmeshvalueisacompletelyindependentcomputation. This allows easy
allel implementation and—more importantly—simplifies construction of adaptive mest
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which concentrate computational effort near the interface. Thus the cost of going u
dimension is eliminated.

o Adaptive mesh refinement does not globally restrict the time step because
time step is decoupled from the CFL stability condition by the unconditional stability ¢
CIR.

o Adaptive mesh refinementcriteria are easy to formulate because we are computin
approximate distance to the interface, which naturally determines refinement. No deriva
estimates are necessary.

These methods are implemented on a tree mesh in [37] and combined with fast tree-b
redistancing and extension techniques in [38] to yield a general, efficient, and modt
method for moving interfaces.

3.2. Options
This family of methods can be parametrized by choosing the following options:

o The ¢ interpolation or advection technique which obtaipés, t,) at off-grid
pointss.

o The velocity evaluation technique which buil#gx, t,). This may require differ-
entiation and interpolation in the geometric case, or solution of a PDE or integral equat
in the general case. A general extension technique may be used, or a problem-depel
extension may be built.

o Postprocessing df andg for stability and accuracy: for some problems such a:
curvature flows, the optional postprocessing consisting of velocity truncation and smootf
and redistancing at every step appears to be mandatory for convergence.

o Boundary conditions required when the projected psifalls outside the domain
whereg is known.

3.2.1. Interpolation ofyp

Each evaluation op(x, tn 1) requires interpolation or advection to obtairvalues off
the grid. There are infinitely many interpolation techniques, but our choice is restricted
two requirements. First, the level set functipris only Lipschitz continuous in general
since faceting may occur. Thus high-order polynomial interpolation requiring smooth
should be avoided. Second, stability of the semi-Lagrangian approach in any given nor
guaranteed only for interpolation techniques which do not increase the norm too much.
example, linear interpolation, shape-preserving interpolation [25], and monotone advec
[31] guarantee unconditional max-norm stability.

Given these two requirements, essentially non-oscillatory (ENO) interpolation [15] pr
vides sufficient stability and arbitrary-order accuracy. ENO does not guarantee uncol
tional stability as linear interpolation would, but gives excellent results in practice. Thus
use ENO interpolation and differentiation throughout this paper.

In one dimension, ENO is designed to reduce the variation of the interpolant by slidi
the usual polynomial interpolation stencil to minimize differences. In two dimensions, o
coordinate direction is chosen first and the stencil slides in that direction. Each stencil v
is computed by one-dimensional ENO in the other direction. See Fig. 6 for an examj
This choice breaks — y symmetry, giving a useful error indicator: inaccurate computation
become unsymmetric.



LEVEL SET EQUATIONS 515

0000

FIG. 6. A possible stencil for third-order ENO interpolation to the solid p@n©pen dots indicate mesh
points in the stencil, crosses fictitious points for interpolation inxthariable, and the curve is avoided by the
ENO stencil because across it differences of the interpolated function are large.

3.2.2. Velocity Evaluation

Velocity evaluation may require various problem-dependent computations invalying
derivatives ofgp, and possibly other data. For extending the velocity in PDE problem
we plan to use the general velocity extension of [38]. It redistances efficiently at ev
step and requires the velocity only on the interface, decoupling the level set method fi
the velocity computation ofi(t) and permitting the modular solution of moving interface
problems for PDEs. For the passive transport and geometric flows computed in Sectic
we use the natural velocity extensions of Subsection 2.2, truncated and smoothed away
the interface for numerical convenience. The following additional procedures are requi
for geometric flows.

Differentiation ofp. We compute derivatives @fby optionally smoothing once, then
differentiating the ENO interpolant to. Smoothing is helpful when the interface is facetec
or highly complex, becauseis Lipschitz continuous with corners at the facets (as in Fig. :
above) and unsmoothed ENO differentiation can be inaccurate at corners.

Truncation. The curvature and normal have singularities wRen= 0, so we truncate
geometric velocity fields away fromi(t). We scale the velocity vectds away fromI"(t)
so that its maximum norm over the gép| > 2h} is equal to its maximum norm over the
set{|p| < 2h}. Thus largeF values near singularities cannot corrupt the solution.

Velocity smoothing. Differentiating the smoothed ENO interpolanid@roduces accu-
rate normal vectors but noisy curvature, becauseonly Lipschitz continuous; hence we
smooth curvature-dependent velocities. Each smoothing pass replaces each velocity
by the arithmetic mean of the! hearest values. This commi@(h?) error in each step,
so the total error due to smoothing at any fixed tim®i#?/k) = O(h) if the consistency
conditionk > O(h) is satisfied. Thus this smoothing technique matches well with the firs
order CIR scheme. Higher-order smoothing can be used with a higher-order time step
scheme. Figure 7 shows smoothing of an anisotropic velocity field for moving a face
interface, with and withoup and velocity smoothing.
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FIG.7. Thex-component, of the triangular velocity fieldF = (1 + cog30 + 0.3)/2) N whered = ¢, /|| V||

is the angle between the normal vector andxkexis andyp is the hexagonal signed distance function of Fig. 2.
Here F, is computed with degree-1 ENO interpolation and differentiation, and plotted (a) unsmoothed on a

mesh, (b) after one smoothing pass on Ar@@sh, and (c) after one smoothing pass onZadésh.

3.2.3. Redistancing

The level set equation for moving interfaces—unlike a general PDE—is relevant ol
near the zero set of the solution. As a consequence, we can re-initialize or “redistar
the solution at any time, by replacing it with the exact signed distance function to its ze
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\s

FIG. 8. Boundary conditions implemented by projection.

set. Redistancing is expensive if done naively, but several fast schemes are available |
36, 39]. After piecewise-linear contouring @f for example, the Voronoi diagram of the
resulting polygonal interface can be built in theoretically optimal time [44] and yields almc
instantaneous redistancing by standard optimal search techniques [16]. A simplified Vore
diagram [19] can yield the same result with considerably lower conceptual complexi
however, implementations are not yet available.

Redistancing can be viewed as a form of filtering which eliminates many numerical iss
while preserving the interface. For example, boundary conditions far from the interface
come much less important because their effect is discarded after redistancing. Redistat
also simplifies geometric velocities: wheris a signed distance functiofiyV¢| =1 near
I'(t), soN andC simplify to Vg and Ag.

3.2.4. Boundary Conditions

Semi-Lagrangian schemes require numerical boundary conditions to specify values
(s, th) whens lies outside the domailD covered by the grid. There are two simple
boundary conditions: extension and projection. In extension, we extesta constant or
linear function along lines normal to the bounday and apply our standard interpolation
scheme to interpolate the extended values. tim projection, we arrest as it leaves the
domain and use one-sided interpolation to the point ween®sses D. Figure 8 shows
projection in action: if the poins from Eq. (42) falls outside the domain, then the value o
¢ is interpolated t&’ ande (X, tn + k) = ¢(S, tn).

Our method uses projection because it is simple, effective, and it combines well w
ENO schemes which adapt automatically to one-sided interpolation. The combinatior
projection with truncation, smoothing, and redistancing proved highly effective in our n
merical examples. Further research into boundary conditions might be useful in solv
parabolic problems like curvature flow where information enters the domain at high spe

3.3. Convergence

Semi-Lagrangian time-stepping schemes are ideal for solving level set equations, bec
they promise optimal efficiency via easy adaptive mesh refinement and unrestricted |
steps. To fulfill this promise, they must converge to the correct solution near the interfz
The following heuristics—and the experiments of Section 4—suggest that these sche
should converge.
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3.3.1. Absence of shocks

Semi-Lagrangian schemes converge for Lipschitz continuous solutions of advection ec
tions [12], but diverge when shock discontinuities are present [17]. This poses no prob
for level set equations, which—like advection equations in atmospheric science—have
shocks. Indeed, the solutignmust remain Lipschitz continuous at all times, or we canno
extract the zero sét(t). Lipschitz continuity can be rigorously proven for passive transpol
and some geometric problems [10] and guaranteed in general by redistanaireyery
step.

Given thatp remains Lipschitz continuous, itis easy to see why semi-Lagrangian schen
should work: At a shocky would be discontinuous, so a tiny error in velocity would make
the trajectory look the wrong way and commit @t1) error ing, followed by F; hence
shocks would move at the wrong speed. A Lipschitz continyohbas “kinks” or corners
at worst rather than discontinuities, so a small velocity error causes a small solution er

3.3.2. The CFL Condition

The CFL condition requires that a convergent numerical scheme must propagate in
mation about solution values at approximately the right speed, and usually restricts
time step. Our goal in applying semi-Lagrangian schemes to moving interface proble
is to satisfy the CFL conditiowithoutrestricting the time step. For interfaces undergoing
passive transport, we have linear advection where semi-Lagrangian schemes converge
so the CFL condition is satisfied. For geometric problems involving curvature, the le
set equation becomes parabolic and information propagates along the interface with
nite speed. Even so, our methods can satisfy the CFL conditi&n=e8(h) — 0 for the
following heuristic reasons.

Nonlocal velocity computation.The domain of dependence of the CIR solutiotx,
thy1) obviously includes the single interpolation point x + kF (X, t,) and its stencil, but
the points in turn depends on the values used to compute the extended veloEity, ty).
Thus the CFL condition can be satisfied in principle by computhgonlocally with
arbitrarily large time steps. For PDE-type moving interface problEnsalmost always a
global functional ofp, so the CFL condition is satisfied.

From a theoretical point of view, if the solution is continuous and the problem has
maximum principle, each new solution value is exactly equal to some old solution val
define a velocity field= to point to that old value. This highly nonlocal velocity satisfies
the CFL condition with any time step.

Velocity smoothing. A specific nonlocal technique which satisfies the CFL condition i
to postprocess the velocity field by smoothing or averaging it over a sufficiently large sten
Accuracy can be maintained by increasing stencil size only logarithmicaliy-ag. In
practice, a few passes of smoothing produces convergent solutions even though curv
flow velocities give parabolic level set equations, for which explicit schemes usually requ
k= 0(h?).

Redistancing. Replacingy by the signed distance to its zero $&t) also implements
long-distance information transfer and helps satisfy the CFL condition. While redistanc
propagates information primarily normal to the interface, its influence is enhanced in regi
of high curvature such as corners where normal vectors cross near the interface: thes
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also the regions where propagation speeds are highest. Frequent redistancing also rer
many of the other inconvenient numerical artifacts of the level set method, such as boun
conditions and treatment of singularities.

Velocity extension. For general moving interface problems, the velodityis known
only onT'(t) and must be extended RF. Typically F is extended as a constant normal
to I'(t) [1, 5, 38, 39], propagating information along the same paths as redistancing
satisfying the CFL condition in the same way.

Modularity. Since a major design goal of our method is modularity—the moving inte
face code should have minimal information about the velocity-interface relationship—thi
postprocessing techniques should maintain modularity while satisfying the CFL conditi
Nonlocal velocity computation and smoothing inhibit modularity, while the combinatio
of redistancing and velocity extension respects it.

4. NUMERICAL RESULTS

We study the accuracy of our semi-Lagrangian level set method on several interfz
moving under passive transport and geometric motion with corners, anisotropy, nontri
topology, and curvature. Some PDE-type examples with a general velocity extension |
will be treated in future work.

Unless otherwise noted, all the examples were computed with the following numeri
parameters.

o Third-order ENO was used for both thhénterpolation and the velocity computation
(in geometric moving interface problems wh&ferequires derivatives af).

o Three runs were made with 40, 80, and 160 time steps oA, 8&) and 168 mesh.
Most plots superimpose the three runs to demonstrate convergence to graphical accur

o For curvature-dependent problems, the velocity was truncated and smoothed ¢
per step, ang was redistanced at every step to ensure the CFL condition was satisfied

The method was implemented for two-dimensional level set equations in Standarc
compiled with the SunSoft C compiler using the -fast flag, and run on one CPU of a 2-C
200 MHz Sun Ultra-2 under Solaris 2.6.

4.1. Passive Transport

Passive transport problems form convenient test cases for level set methods, bec
complex exact solutions can easily be evaluated. Thus we can measure the error anc
of convergence. We carry out convergence studies for three passive transport problem:
verify the accuracy, robustness, and conservation properties of the CIR scheme with E
interpolation of degrees 1, 2, and 3.

4.1.1. Bubbles in a Shear Flow

We begin our study of passive transport by measuring the accuracy of the methoc
the collection of circular bubbles shown in Fig. 9, moving with a divergence-free line
shearing velocity

1 1
F(x,y):E(X—Serl,—y—é). (43)
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FIG. 9. A collection of bubbles moving with linear shearing velocity.

We used 20, 40, 80, and 160 time steps ont0< 1 and 46, 80, 16, and 326 grids

on [-6, 6] x [—6, 6] (see Table I). ENO interpolation of degrees 1, 2, and 3 was used
interpolatep. Table | reports the maximum of the exact distance function on the cor
puted contour at timé= 1. First-order accuracy is clearly evident along diagonals, whel

TABLE |
Grid N =20 40 80 160
ENO degree 1
407 0.342 0.551 0.756 0.55
8(% 0.0428 0.15 0.235 0.353
160 0.00628 0.00868 0.0677 0.231
32¢ 0.019 0.00351 0.00467 0.0294
ENO degree 2
47 0.0938 0.13 0.102 0.0911
8C% 0.0126 0.0389 0.104 0.145
160 0.022 0.00967 0.00183 0.0272
32¢ 0.0238 0.0116 0.00536 0.00163
ENO degree 3
40 0.00708 0.122 0.188 0.193
8(? 0.018 0.00562 0.0431 0.0519
160 0.0226 0.0103 0.00408 0.00189
327 0.0239 0.0117 0.00555 0.00249

Note.Maximum error at = 1 in the interface shown in Fig. 9, moving with diver-
gence-free linear shearing velocify(x, y) = %(x -3y+1-y— %), computed
with Ny time steps of the CIR scheme with ENO interpolation of degrees 1, 2,
and 3. The domain is{6, 6]2.
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h < O(k). This agrees with the one-dimensional model theory of Section 2. The error
creases dramatically when we change from ENO degree 1 to degree 2, but degree 3 n
no further improvement.

4.1.2. Grid Effects on Triangles

A common problem in moving interfaces is sensitive dependence on numerical artife
such as grid orientation. We check for grid effects in a sharply faceted interface by revolvi
shrinking, and expanding a triangle with a linear velocity field. In all cases, the interfs
moves with the appropriate speed independently of its orientation relative to the g
Figure 10 plots the results with both second and third-order degree ENO on the don
[—2, 2]? and shows that grid effects are minimal. The dissipation exhibited in Fig. 10a cot
be considerably reduced by second-order trajectory computation.

FIG. 10. Tests of grid effects in sharp corners with linear velocity field. (a) A rotating triangle at a half peric
and a full period, computed with degree-2 ENO. (b) A triangle shrinking Witk, y) = %S(x, y) fromt=0to
t=1. (c) A triangle expanding witl (x, y) =2(x, y) fromt =0 tot = 1. Plots (d) through (f) show the same
calculation with degree-3 ENO.
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FIG. 11. A collection of circular bubbles under a divergence-free shearing velocity.

4.1.3. Mass Conservation in a Shear Flow

We conclude our study of passive transport by measuring mass conservation in a co
tion of bubbles moving in the divergence-free shearing flow given by

max(1 — (1 — x? — yz)i, 0)
8(x% 4 y?)

F(X’ y) = (_Y» X)' (44)

Figure 11 shows the extreme distortion produced by this flow, computed with 160 til
steps on &< t < 100 and a 160mesh on the domain{6, 6]°. Despite this distortion, mass
is well conserved; the final area inside the computed interface is 12.4669, close to the €
value of 4r =12.5664.

In the exact solution interfaces cannot touch, because of standard uniqueness thec
for ordinary differential equations. Thus merging of computational interfaces can hapy
even when itis impossible in theory, and must be allowed for in any robust moving interf
method. Automatic handling of unexpected topological changes is one of the strength
the level set approach.

4.2. Geometry

We validate our semi-Lagrangian moving interface method by computing converged
lutions to a variety of geometric moving interface problems including viscosity solutiol
to corners moving with unit normal velocity, the faceted Wulff limit for anisotropic nor:
mal velocity fields, complex topological changes under anisotropic curvature-depenc
flows, and nonconvex shapes shrinking to round points under flow by curvature. Mov
interface problems for PDESs require a general velocity extension but display little additio
complexity and will be solved in future.
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TABLE Il
Grid Nr =20 40 80 160
ENO degree 1
20° 0.0589 0.0634 0.0657 0.0668
40 0.0159 0.0179 0.019 0.0197
8(? 0.00557 0.00647 0.00696 0.00722
160 0.00119 0.00128 0.00137 0.00142
ENO degree 2
20° 0.0077 0.00801 0.00814 0.0082
407 0.0014 0.00146 0.00148 0.00148
8(? 0.000456 0.000481 0.000488 0.000489
160 0.0000768 0.000078 0.0000792 0.0000795
ENO degree 3
20° 0.00185 0.00194 0.00198 0.00199
407 0.000658 0.000669 0.000672 0.000674
8(? 0.000346 0.000349 0.00035 0.000351
16C 0.0000724 0.0000725 0.0000726 0.0000726

Note.Maximum of exact distance function &= 1 on a circle of radiuRR(t) =1+t and
center (¥2r, 1/27), moving with constant normal velocity = 1, computed withN; time
steps of the CIR scheme with ENO interpolation of degrees 1, 2, and 3.

4.2.1. Unit Normal Velocity

We verify first-order accuracy on a unit circle centeredl#®r, 1/2), expanding with
unit normal velocityF = N, extended naturally via Eq. (13) with singularities truncated,;

Vo

F=N= .
max(1078, | Vel)

(45)

Table Il reports the maximum of the exact distance function on the computed contou
timet = 1, with 20, 40, 80, and 160 time steps og 0< 1 and 26, 40?, 80?, and 168 grids

on [-3, 3]°. ENO interpolation of degrees 1, 2, and 3 was used both ip théerpolation
and in the evaluation d. Considerably better than first-order accuracy is evident alon
diagonals, wheré < O(k), because the exact interface is a linear functioh of

4.2.2. Viscosity Solutions with Corners

One of the most important issues in level set equations is the correct computatior
“viscosity solutions” for faceted interfaces in geometric and PDE problems [27]. A key i
gredient in this computation is a corner moving in or out with unit normal velocity. Inwat
motion should keep corners sharp (the “shock” case), while outward motion should prod
rounded corners due to Huygens’ principle (the “rarefaction” case), as discussed in S
section 2.1.2. Figure 12 shows a triangle moving with positive and negative unit normal
locity, both aligned with the mesh and at an angle to check for grid effects, and demonstr
that our semi-Lagrangian method computes the correct viscosity solution in each case

This agrees with theory: any reasonable computed normal has unit length, so our me
propagates information at unit speed. An incorrect solution typically preserves a st
corner moving outward, rather than rounding it off as prescribed by Huygens’ Princip
Figure 13 illustrates the difference. CIR produces the correct solution becaugevadues
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FIG. 12. Viscosity solutions for triangles moving with positive or negative unit normal velocity. (a) Ar
expanding triangle at zero angle to the mesh, with round corners. (b) An expanding triangle at angle 0.2 rac
to the mesh, with round corners. (c) A shrinking triangle at angle 0.2 radians to the mesh, with sharp corners

delineatingl’ (1) near the corner must be located on a unit circle centered somewhere
I'(0), rather than/2 fromI"(0), as they are in the incorrect solution.

4.2.3. Anisotropic Normal Velocity and the Wulff Limit

Another key issue for level set methods is anisotropic motion along the normal. M
numerical methods for level set equations are connected to the theory of Hamilton—Ja

WRONG RIGHT

FIG. 13. Right and wrong propagation of corners under unit normal velocity.



LEVEL SET EQUATIONS 525

equations
¢+ H(Vp) =0, (46)

which encounters difficulties when the Hamiltonidris nonconvex. For anisotropic normal
velocities

V = R+ e cogké), cosh = o4/ Voll, )
the Hamiltonian is nonconvex if
R+e(l—k? <0< R— e, (48)

causing some Hamilton—Jacobi methods to break down.

In Fig. 14, we evolve an initially circular interface under several anisotropic normal v
locities, producing nonconvex Hamiltonians. The interface converges rapidly to the “Wt
shape” [23, 42, 43] corresponding to each given anisotropy, as predicted by rigorous th
[21]. The faceted Wulff shape is a natural limit, since portions of the interface with norrr
vectors not aligned along minima of the velocity will grow faster, causing facets to devel
In Fig. 15, we begin from a highly nonconvex initial interface, producing a severe te
of the method. The asymptotic Wulff shape is still computed accurately. The small gr
dependence which remains could likely be removed with a second-order accurate trajec
computation.

These computations were smoothed and their convergence improved by applying
pass of smoothing tg before ENO differentiation, one passFkoafter differentiation, and
redistancingy at every step. This emphasizes an essential reasons why the CIR sch

FIG. 14. WAulff shapes growing from circular initial interfaces (with radiy®knd center atl/2xr, 1/2r)).
Here 0<t <1 and the domain is{3, 3].
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FIG.15. Wulff shapes developing from nonconvex initial interfaces (giveq}éyan — 124+ (2ry —1)2=
27(0.8+ 0.4 cog5¢)) where tark = (2ry — 1)/(2rx — 1)). Here O<t < 1 and the domain is{3, 3]%.

works for level set equations: We are free to modifyand F away fromI'(t) to suit
numerical convenience—or to satisfy the CFL condition.

4.2.4. Merging under Anisotropy

Starting from a collection of randomly placed, sized, and oriented trefoil shapes, we m
the interface along its normal with a threefold anisotropic spéed2 + cog30 + 0.3),
wheref is the angle between the normal vector and the positiaris. This motion involves
considerable topological complexity, which is correctly computed by the level set approa
Figure 16 shows that even this highly nonconvex initial interface is also aproaching
asymptotic triangular Wulff shape as»> oco.

4.2.5. Circles under Curvature

A circle shrinking with normal velocity equal to its curvature has exact ragi$ =
/R(0)2 - 2t, so with R(0) =2 a circle should collapse to a point in time<@ <2. A
smaller circle withR(0) =1 vanishes in tima =0.5. Figure 17 shows convergence to
graphical accuracy, computed with 20, 40, 80, 160 time steps @) 807, 167 grids
and plotted every 0.2 time units.

A convenient measure of convergence is the extinction time—the first time when
interface completely vanishes. For the four runs shown, the extinctiontime is 1.1, 1.5, 1
and 1.85, displaying slow but smoothly monotone first-order convergence to the cori
value 2. The extinction time is difficult to resolve because it depends sensitively on |
movement of the interface as it vanishes. Even with smoothing, our computed velo
always moves the interface faster than the exact velocity.



FIG.16. A collection of randomly located, sized, and oriented trefoils growing and merging under anisotro
normal velocityV = 2+ cog30 + 0.3). Here our method used third-order ENO with (a) 40 time steps orf a 40
mesh, (b) 80 steps on an@fesh, and (c) 160 steps on an 16tesh to achieve convergence to graphical accuracy

527
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FIG. 17. Convergence of two circles collapsing under curvature flbw C, computed front =0 to the
extinction timegt = 1/2 andt = 2 with third-order ENO on (a) 20 time steps or?2fdid covering [-4, 4] with
1 velocity smoothing pass per step, (b) 40 time steps 8rgda covering [-4, 4]? with 2 passes per step, (c) 80
steps on 80grid with 3 passes, (d) 160 steps on 1§@id with 4 passes.

For this parabolic problem, velocity smoothing and truncatjsmoothing, and frequent
redistancing all contribute to convergence of the CIR schenke-a® with k= O(h). As
discussed in Subsection 3.3.2, they all play a role in satisfying the parabolic CFL condit
with these unusually large time steps. We truncated the velocity away from the interfac
each step, smoothed the truncated velocity once per step ontheea8, twice per step on
the 4¢ mesh, and so forth. The resulting logarithmic increase in stencil width as the me
size goes to zero satisfies the CFL condition. We smoaphatte before ENO differentia-
tion, to compute derivatives of nonsmogthalues. We also redistancedrom the interface
at the end of every step, a highly nonlocal information transfer which also helps satisfy
CFL condition. These smoothing and redistancing options were chosen after some ex|
mentation and constitute the minimum postprocessing required to achieve convergenc

4.2.6. Nonconvex Interfaces under Curvature

We verified that randomly placed, sized, and oriented nonconvex trefoil shapes colla
under curvature flow to round points, as predicted by a geometric theorem [14]. Figure
shows results for & t < 1/2 on [-4, 4]2, with one velocity smoothing pass, opesmooth-
ing pass, and one redistancing per step. Experiments showed that this rather small an
of smoothing sufficed for convergence to graphical accuracy.
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4.2.7. Nonconvex Interfaces Merging under Anisotropy Plus Curvature

Finally, we demonstrate topological complexity in the viscosity limit, with a curvature
smoothed velocity

V =2+ cog30 + 0.3) + €C. (49)

We illustrate the limite — 0 computationally withe =0.1 and 0.01, carrying out a con-
vergence study for each valueo$eparately. Figure 19 shows the results, which converg
rapidly to the results shown in Fig. 16. We used one velocity smoothing pass soneoth-
ing pass, and one redistancing per step.

4.3. Convergence

These numerical experiments have consistently demonstrated that our semi-Lagrar
methods converge with appropriate problem-dependent truncation, smoothing, and re
tancing options. Our methods converge without options for passive transport and con:
normal velocity. When anisotropy or curvature is present, redistancing plus one to f
passes of velocity smoothing must be applied at each step to ensure convergence. T
conclusions agree with the heuristics of Subsection 3.3 and show that CFL timestep res
tions can be eliminated—even for curvature-dependent parabolic problems!

5. CONCLUSION

We have described and validated new numerical methods for moving interfaces, be
on semi-Lagrangian time stepping schemes for level set equations. We presented heu
arguments and experimental evidence showing these methods work well for difficult m
ing interface problems involving merging, faceting, transport, and anisotropic curvatu
dependent geometry.

These methods have unique capabilities

o to move interfaces with appropriate time steps unconstrained by humerical stabi
issues,

o to decouple each mesh point from the others, allowing easy adaptive mesh ref
ment, and

o potentially to decouple the velocity computation from the moving interface, allowin
convenient modular solution of a vast spectrum of moving interface problems.

Our ultimate goal is a “black-box” method for moving interfaces, which can accept tl
interface and its velocity at time and return the evolved interface one time step latel
Such a method can simplify the solution of moving interface problems, because the moy
interface code need not change when the physical problem off the interface is modifiec
Planned future research on these methods includes

o further analysis of CFL conditions for parabolic problems with infinite propagatio
speed,

o adaptive modular methods [38],

e second-order accurate time stepping,

e CAD geometry input and contouring with NURBS, and

e applications to industrial crystal growth problems, where the moving interface
coupled to complex materials science.
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